
Tutorial: Implementing a Domain Specific Language on .NET

©PLEUS Consulting 2010 – http://www.pleus.net

Today's business applications require a high degree of flexibility in order to keep up with frequent

market changes. Technologies such as Business Process Management (BPM), Business Rules

Management (BRM), Service-Oriented Architecture (SOA) and agile methodologies such as Scrum

address these demands. Although the aforementioned are all great approaches, there is still a

significant gap between business and IT in most cases. This is where business-oriented Domain

Specific Languages (DSL) fits in.

Before we go into detail about the development, it is relevant to look at the current language

landscape.

At the very bottom of the diagram are the General Purpose Languages. These are what most people

would refer to as programming languages. In the last couple of years several new languages have

been invented. Initially called scripting languages, they are convenience languages that make it easier

to use the underlying platform such as the JVM or CLR and to add dynamic features to it. Most

developers are already used to Domain Specific Languages that have a technical focus, such as SQL,

HTML, BPEL, etc. Even in the business domain we can already see Application-DSLs such as office

scripting or macros, although a business user would not state that he or she is a programmer. Martin

Fowler refers to these people as Lay Programmers. Modelling languages such as UML can be used as

DSLs if they are transformed into something executable. This is the core idea of Model Driven

Architecture (MDA). BPMN is especially interesting, as with version 2.0 it moves from a pure

modelling language towards an executable language.

Business-DSLs target the business user. Initially this might appear to be unusual because IT people

tend to think that a business user is not able to write code. The key is that the Business-DSL is

http://martinfowler.com/bliki/LayProgrammer.html

© PLEUS Consulting 2010 – http://www.pleus.net

tailored to the users, so that they can manage it. Practice has shown that if the Business-DSL is

developed in close collaboration with the business users, it can actually be a huge step towards

Business/IT-Alignment. A practical example of what can be achieved with Domain Specific Languages

is shown in the European Patent Office Case Study from SpringSource.

Business-DSLs have the potential to dramatically improve a business' involvement in IT development.

They can empower business users to adapt parts of their IT systems without the help of the IT

department. It must be highlighted that this has to happen in a well-defined sandbox environment

where it will not cause any serious damage. A staging environment with automated testing can

reduce the potential risk.

DSL development is often considered to be difficult. This is not true, particularly if DSL is based on

existing technologies. These DSLs are called internal DSLs.

In this tutorial we develop an internal Domain Specific Language on the .NET platform, including an

editor with syntax highlighting and auto completion. I have chosen Boo as the language due to its

dynamic features and .NET integration capabilities. As an internal DSL, it can utilise the full power of

the underlying platform. The effort required for implementation is reduced to a minimum.

Everything shown in this tutorial can also be achieved on the Java platform, simply replace Boo with

Groovy, .NET with JEE and SharpDevelop with Eclipse. The principles are identical.

In order to run the code in this tutorial you need the following software:

1. .NET runtime

2. Boo

3. SharpDevelop IDE

Boo and SharpDevelop are both Open Source with liberal licenses MIT/BSD and LGPL. The .NET

runtime is free to use.

The DSL we are going to implement is called the sales language which is used to buy products. It is

kept simple intentionally, so it is possible to only focus on the technical aspects.

http://www.pleus.net/articles/casestudies/epo.pdf
http://www.microsoft.com/downloads/details.aspx?FamilyId=333325FD-AE52-4E35-B531-508D977D32A6
http://boo.codehaus.org/
http://www.icsharpcode.net/OpenSource/SD/

© PLEUS Consulting 2010 – http://www.pleus.net

 The final result looks like this:

Real DSLs are tailored to the business domain, so your DSL might look totally different.

THE DOMAIN MODEL

At the heart of a DSL is the domain model. It represents the objects which are manipulated by the

verbs of the DSL. We implement a shopping cart which can contain arbitrary products.

 class Product:

 [property(Name)]

 _name as string

 [property(Qty)]

 _qty as int

 def ToString():

 return _name + ":" + _qty

A product only has two properties: name and quantity. The sales language is implemented as a .NET

class in Boo. The benefit of this is that most DSL verbs can be implemented as simple methods in the

class. Likewise, our shopping cart is just a property.

 public abstract class SalesDSL:

 _shoppingCart = []

 cart:

 get:

 return _shoppingCart

© PLEUS Consulting 2010 – http://www.pleus.net

Standard types can be extended in order to improve the usability. In addition to the method

extensions that exist in C#, in Boo, it is also possible to add property extensions, as shown in the next

example.

 [Extension]

 static EUR[value as double]:

 get:

 return value * 1

 [Extension]

 static GBP[value as double]:

 get:

 return value * 1.18

Now we can write the following in our DSL:

 incase 50.0.GBP > 50.0.EUR

 print “GPB is more than EUR”

THE VERBS

The DSL verbs define the behaviour of the DSL. Verbs can be implemented in three different ways.

Plain method verbs

If a verb is implemented as a simple method, it can directly be called from within the DSL.

 final AMEX = "American Express" # Constant

 def checkout(creditCard as string):

print "Checking out using ${creditCard}"

The useful thing with Boo is that it is possible to omit the parenthesis. This creates a more natural

feel for the DLS user, as shown below.

 checkout AMEX

AMEX is just a string constant in the SalesDSL class. If you need block statements you can use the

callable type which allows for the passing of code blocks (closures) to the method.

 def incase(condition as bool, block as callable):

 if condition:

 block()

© PLEUS Consulting 2010 – http://www.pleus.net

In the DSL, the method with the callable parameter can be used like this:

 incase true:

 print “Yes”

AST macro verbs

AST macros allow for complex code generation at the compiler level. If a macro is called, the code

inside the quasi-quotation block [|…|] is yielded to the compiler.

macro buy:

 c = 0

 name = "Unknown"

 qty = 1

 for i in buy.Arguments: # Default parameter checking

 if c == 0:

 name = cast (StringLiteralExpression,

 buy.Arguments[c]).Value

 if c == 1:

 qty = cast (IntegerLiteralExpression,

 buy.Arguments[c]).Value

 c++

 code = [| # Quasi-Quotation

 block:

 print "Buying " + $(name) + ":" + $(qty)

 product = Product(Name:$(name), Qty:$(qty))

 _shoppingCart.Add(product)

 |].Body

 yield code

This example also shows the implementation of the Convention over Configuration paradigm. If the

DSL user omits the parameters they are set to meaningful defaults. The user only has to specify

specialties, not the standard behaviour.

 buy “Pizza”, 20 # Buy twenty

 buy “Donuts” # buy one

http://en.wikipedia.org/wiki/Convention_over_configuration

© PLEUS Consulting 2010 – http://www.pleus.net

The verbs do not usually return values, as the DSL manages the state handling internally. Good DSLs

shield the user from complexity as much as possible.

AST macros are the most powerful and most complex means of implementing DSL verbs.

Missing method interception verbs

By implementing the IQuackFu interface a class can intercept all undefined methods and properties

at runtime. This allows for the implementation of generic DSL solutions in which the verbs are

probably unknown during development.

 public abstract class SalesDSL(IQuackFu):

 def QuackInvoke(name as string, ps as (object)) as object:

 print "Invoking " + name

THE ENGINE

At this point our language definition is ready. Instead of writing the DSL inside the SalesDSL class we

would like to be able to integrate stand-alone scripts. In doing this, we hide the DSL implementation

entirely from the user.

We can use the Boo compiler pipeline to merge the DSL script into the SalesDSL class at runtime. To

do this we need a custom compiler step as shown below:

 public abstract class SalesDSL(IQuackFu):

public abstract def Start():

 pass

 class BaseClassStep(AbstractTransformerCompilerStep):

 override def Run():

 super.Visit(CompileUnit)

 override def OnModule(node as Module):

 baseClass = [|

 class $(node.Name) (SalesDSL):

 public override def Start():

 $(node.Globals)

 |]

 node.Globals = Block()

 node.Members.Add(baseClass)

In the OnModule method a new class is generated using quasi-quotation. The generated class is

derived from SalesDSL. The script code is placed in the Start-Method, which overrides the abstract

definition in the SalesDSL class.

© PLEUS Consulting 2010 – http://www.pleus.net

To start the class generation we have to hook up our BaseClassStep to the Boo compiler pipeline:

 compiler = BooCompiler()

 compiler.Parameters.Pipeline = CompileToMemory()

 compiler.Parameters.Input.Add(FileInput("sales.sdsl"));

 compiler.Parameters.Pipeline.Insert(1, BaseClassStep())

 ctx = compiler.Run()

 type = ctx.GeneratedAssembly.GetType("sales")

 instance as SalesDSL = Activator.CreateInstance(type)

 instance.Start()

The result is an instance of the SalesDSL class with the script content merged into the Start-Method.

Calling Start executes the DSL script, resulting in the following output:

As the DSL script is compiled to 100% MSIL it is possible to call arbitrary .NET classes from within the

script. To prevent dangerous actions such as System.Environment.Exit(0), the DLS needs to be

constrained. As we have already seen, the custom compiler step uses a different and very simple

approach for this purpose.

 def CheckConstraints(result as CompilerContext):

 temp = StringWriter()

 astobject = result.CompileUnit

 s = XmlSerializer(astobject.GetType())

 s.Serialize(temp, astobject)

 if temp.ToString().IndexOf("Expression\" Name=\"Exit\"")!= -1:

 raise Exception("Exit is not allowed in sales script")

We serialise the AST into a string and perform a simple string search operation for suspicious code.

© PLEUS Consulting 2010 – http://www.pleus.net

Now we add the CheckConstraint call to our engine.

 ctx = compiler.Run()

 try:

 CheckConstraints(ctx)

 except ex:

 Console.ForegroundColor = ConsoleColor.Red

 print ex.Message

If we try to run a script like the following

 buy “Pizza”

 System.Environment.Exit(0)

 Checkout AMEX

we will get the following output:

EXECUTION TRACKING

If the DSL runs unattended, for instance on a regular schedule, we need a means to track its

execution. The tracking behaviour can be implemented using AST Attributes. These make it possible

to interweave all kinds of aspects into your code. For instance logging, security or transactions, just

to name a few.

© PLEUS Consulting 2010 – http://www.pleus.net

 [Module]

 public class Tracking:

 public static def Track(verb as string):

 Console.ForegroundColor = ConsoleColor.Magenta

 print ("Tracking: " + verb)

 Console.ForegroundColor = ConsoleColor.Green

 public class TrackAttribute(AbstractAstAttribute):

 def constructor(expr as Expression):

 pass

 def Apply(target as Node):

 type as ClassDefinition = target

 for member in type.Members:

 method = member as Method

 continue if method is null

 methodBody = method.Body

 methodName = method.Name

 if not methodName == "Start":

 method.Body = [|

 Tracking.Track($methodName)

 $methodBody

 |]

To implement such an aspect we need a class that derives from AbstractAstAttribute. The Apply

method is used for the adorned element, which in our case is the class in which the AST is

manipulated. In the above code the original method body is replaced with one containing the

Tracking.Track call. Tracking.Track writes the DSL verb name to the console. A real DSL one would

probably write the tracking data to a database to be shown in an admin console.

To enable the tracking simply adorn the SalesDSL class with the new Track-Attribute, as shown

below.

 [Track(true)]

 public abstract class SalesDSL(IQuackFu):

© PLEUS Consulting 2010 – http://www.pleus.net

Running the tracking enabled DSL shows the following:

THE EDITOR

An editor can be greatly simplified using the DSL. As developers, we are used to undo/redo, syntax

highlighting and auto-completion. Providing these features to the DSL user makes their life much

easier. However, building all these features from scratch is a lot of work. Luckily with Eclipse and

SharpDevelop we have modular and free editors which are very useful.

The TextEditorControl from the ICSharpCode.TextEditor assembly of the SharpDevelop distribution is

a good example. It can be incorporated in a WinForms application.

All we need to visualise our DSL script using custom syntax highlighting is shown below.

 public partial class SalesEditor : Form

 {

 public SalesEditor()

 {

 var editorControl = new TextEditorControl();

 editorControl.Dock = DockStyle.Fill;

 editorControl.Text = File.ReadAllText("sales.sdsl");

 Controls.Add(editorControl);

 HighlightingManager.Manager.

 AddSyntaxModeFileProvider(

 new FileSyntaxModeProvider(@"..\"));

 editorControl.SetHighlighting("Sdsl");

 }

 }

© PLEUS Consulting 2010 – http://www.pleus.net

The highlighting rules are defined in the file Sdsl.xshd. Here is a snippet:

 <KeyWords name="DSLVerbs" bold="true" italic="false" color="Red" >

 <Key word="buy"/>

 <Key word="checkout"/>

 </KeyWords>

 <KeyWords name="DSLFlow" bold="true" italic="false" color="Blue" >

 <Key word="incase"/>

 </KeyWords>

Implementing auto-completion requires a bit more work. It is based on the interface

ICompletionDataProvider.

A very basic, non-context aware implementation could look like this:

 public class SalesCompletionProvider : ICompletionDataProvider

 {

public ICompletionData[] GenerateCompletionData(

string fileName, ICSharpCode.TextEditor.TextArea textArea,

char charTyped)

{

 return new ICompletionData[]

 {

 new DefaultCompletionData("buy", "Buy goods", 0),

 new DefaultCompletionData("cart", "The cart", 3),

 new DefaultCompletionData("checkout", "Checkout", 0)

 };

}

...

 }

© PLEUS Consulting 2010 – http://www.pleus.net

The SharpDevelop CodeCompletionWindow can be used to show the suggestions.

var textArea = editorControl.ActiveTextAreaControl.TextArea;

textArea.KeyDown += delegate(object sender, KeyEventArgs e)

{

if (e.KeyCode != Keys.Space)

 return;

e.SuppressKeyPress = true;

CodeCompletionWindow.ShowCompletionWindow(this,

editorControl, "",

new SalesCompletionProvider(),((char) e.KeyValue);

 };

We register a KeyDown event handler with the text area of the TextEditorControl. The handler shows

the completion window in case the space key is pressed. The end result looks like this:

A context aware implementation of ICompletionDataProvider can be found in the project attached at

the end of this tutorial.

© PLEUS Consulting 2010 – http://www.pleus.net

SUMMARY

DSLs are potentially very useful, particularly with regards to bringing IT and business closer together.

As this tutorial has shown, it is not too difficult to create your own DSL. The challenge though is to

find the appropriate abstraction for your particular business domain. It is strongly recommended that

DSLs are designed using an iterative approach. Close collaboration of Business and IT is the key to

success.

This article explained the principles of internal Domain Specific Languages and provided a

prototypical implementation based on Boo and .NET. The source code can be found here:

salesdsl.zip

About the author:

Wolfgang Pleus is an independent IT consultant in the area of service-oriented architecture (SOA)

and Business Process Management (BPM). His primary interest is the implementation of SOA and

BPM concepts at the application-, architecture- and strategy level and is driven by the question of

how to realise agility with state of the art technologies. He has been supporting mission critical

enterprise projects for more than 15 years. As an author, speaker and trainer he regularly shares his

experience nationally and internationally.

Contact: wolfgang.pleus@pleus.net

salesdsl.zip
mailto:wolfgang.pleus@pleus.net

