Sustainable Microservices with Spring Boot

In my article series about Sustainable Service (SSD) design I described a design and implementation approach to develop services with technical decoupling to improve reuse.

At the level of IT infrastructure sustainable means that service implementations can be used in different technical environments without a major rewrite. Technical decoupling is a key factor to achieve that. In the second part of the article I have provided an example on how to implement SSD with a JEE stack. Part of this example is a  calculator service which performs simple arithmetic operations.

Due to the technical decoupling, services can be moved with little effort, for example from a JEE Server to other runtimes like Apache Karaf (OSGi) or Spring Boot, just to name a few.

In this blog post I would like to demonstrate how to move the Calculator JEE example from Wildfly JEE Container to Spring Boot. The main difference in the Spring Boot deployment is the fact that each service is bundled with its own HTTP server. The deployment unit is not a JEE EAR which is deployed on a JEE Server, but a so-called über-jar which includes the complete HTTP infrastructure. The über-jar just requires a Java runtime and no additional infrastructure. This kind of deployment creates a high level of service autonomy which is often used in Microservice architectures.

Let me tell you a little story:

Assume Peter is an IT professional who is working on a fictitious software project for a large insurance company. One day a colleague, let’s call him Max, from another project enters Peterʼs office and starts the following conversation:

Max: I’ve heard you’ve implemented some very useful services. I saw them on your service repository Wiki and think we could use some of them in our new project.

Peter: Yes, that’s right. I am glad we’ve created something valuable.

Max: But…I also heard that you are using a full blown JEE Applicationserver to run your services.

Peter: Yes, this is the best runtime for our project, as it helps us to manage centralized deployment. Each service is deployed in its own EAR file, which gives us great flexibility.

Max: For our project we decided to use Spring Boot and deploy each service together with its own HTTP Server. I guess we can’t use your service without a major rewrite then?

Peter: You don’t have to rewrite the services because we’ve implemented them based on Sustainable Service Design.

Max: Sounds great, could you please show me what we have to do to run your services?

Peter: Of course. Let’s start by downloading the Calculator Example, which demonstrates how to build SSD-Services for JEE. First, build the example like so:

mvn clean install

Peter: Now you have the following maven artifacts (jars) in your local maven repository.

net.pleus.services.calculator:calculator_api
net.pleus.services.calculator:calculator_impl

Peter: You can use this artifacts without any modifications.

Max: Ok, I can see that api and impl form the core service. Our project decided to just use JSON/HTTP as the protocol for service interaction. I saw that in the orignal example REST, EJB and SOAP are provided.

Peter: No problem, just add the bindings when you need them. With SSD you can add additional bindings any time. So you can start with the bare minimum and expand later. This gives you great flexibility. Add the JSON/HTTP-binding first.

Max: In the original example I saw that it was called REST-Binding.

Peter: Although the original calculator example uses the term REST-Binding, I prefer to call it JSON/HTTP-Binding because it better describes what it is. An SSD-Service can manage multiple resources (nouns) and can support arbitrary operations (verbs). This representation is very well suited to modelling the real world (the domain) which is important for proper service design and reuse. If you really have the requirement to create REST-Style APIs, you can do it in the respective binding. But be aware that in this case you create a variation of your service contract (subcontract) which also relies on HTTP-Verbs instead of the verbs in the primary contract. Although it is possible, I would not recommend it. Ok, let’s not digress but move on with Spring Boot.

Max: Ok, please show me how to create the bootable service.

Peter: Sure, start with the following Maven-POM , which is based on the tutorial Building a RESTful Web Service with Spring Boot.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    
    <modelVersion>4.0.0</modelVersion>

    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>1.3.5.RELEASE</version>
    </parent>

    <groupId>net.pleus.services.calculator</groupId>
    <artifactId>calculator_boot</artifactId>
    <version>1.0-SNAPSHOT</version>
    <name>Services :: calculator :: boot</name>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
        </dependency>
        <dependency>
            <groupId>net.pleus.services.calculator</groupId>        
            <artifactId>calculator_api</artifactId>
            <version>1.0-SNAPSHOT</version>
        </dependency>
        <dependency>
            <groupId>net.pleus.services.calculator</groupId>        
            <artifactId>calculator_impl</artifactId>
            <version>1.0-SNAPSHOT</version>
        </dependency>
    </dependencies>
    
    <properties>
        <java.version>1.8</java.version>
    </properties>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

</project>

Peter: From lines 25-34 you can see the existing calculator jars. The rest is required to create a minimal Spring Boot über-jar. Now we create a JSONHTTP-Binding using Spring MVC.

@RestController
@RequestMapping(value = "/services/calculator/rest/api", method= RequestMethod.POST)
public class CalculatorJSONHTTPBinding {

    @Autowired
    private Calculator service;

    @RequestMapping(value = "/performcalculations", method= RequestMethod.POST)
    @ResponseBody
    public PerformCalculationsResponse performCalculations(@RequestBody PerformCalculationsRequest request) {
        return service.performCalculations(request);
    }
}

Peter: To add this binding we need some boilerplate code. First an application class.

@SpringBootApplication
public class Application {

    public static void main(String[] args) {
        ApplicationContext ctx = SpringApplication.run(Application.class, args);
    }
}

Peter: And second a little factory to create a service instance, so that it can be injected using @Autowired in the binding.

@Configuration
public class Factory{
    @Bean public Calculator createCalculator(){
        return new CalculatorImpl();
    }
}

Peter: That’s all. Build it and run the über-jar with the following command.

mvn clean install
java -jar target/calculator_boot-1.0-SNAPSHOT.jar

Max: Wow, that’s all? Can you prove that it works?

Peter: Of course. For example fire up SOAP-UI and send this request to the service at http://localhost:8080/services/calculator/rest/api/performcalculations

{
	"correlationid":"4711",
	"calculations": {
	 "value": [
	   {
	     "operation": "ADD",
	     "inputs": {
	       "value": ["1","2"]
	     }
	   }]
	}
}

Peter: This is what you get.

{
   "correlationid": "4711",
   "calculations": {"value": [{"result": 3}]}
}

Max: Can I reuse the existing binding from the original example instead of the one we created?

Peter: Yes, but it is technically coupled to JAX-RS. If you want to use it please read the blog Using JAX-RS With Spring Boot Instead of MVC.

Max: I saw that the original example contains a handy Java client to access the service. Can I reuse it?

Peter: You mean net.pleus.services.calculator:calculator_binding_rest_client. Yes, you can use it as it is. And it makes sense, as it gives you a nice fluent Java-API to access the service. First add the following Maven artifact to your pom.xml.

        
            net.pleus.services.calculator        
            calculator_binding_rest_client
            1.0-SNAPSHOT
        

Peter: Now you can use the Java client in your tests like this.

@Before
public void setUp() throws Exception {
  client = new CalculatorClient("localhost",port);
}
    
@Test
public void add() throws Exception {

  // Create calculation inputs
  Calculation calculation = new Calculation()
   .withOperation(Operation.DIVIDE)
   .withInputs(new ArrayOfInt()
     .withValue(9,3,2)
   );
				 
  // Create request
  PerformCalculationsRequest request = new PerformCalculationsRequest()
    .withCorrelationid(UUID.randomUUID().toString())
    .withCalculations(new ArrayOfCalculation().withValue(calculation));
		
  // Call service	
  PerformCalculationsResponse response = client.performCalculations(request);

  // Check correlation
  Assert.assertEquals(request.getCorrelationid(), response.getCorrelationid());
		
  // Check result
  Assert.assertEquals(new BigDecimal(1.5), response.getCalculations().getValue().get(0).getResult());	
}

Peter: When you run the test Spring Boots starts the HTTP Server and calls the service.

Max: It seems that I can easily run your service and even use the Java client within Spring Boot. We have a sustainable service and a lightweight runtime. Perfect! That saves us a lot of time and money. Maybe we should try to evolve the service together? This way we could create further value for other projects.

Peter: Good idea! If you want to try the example I’ve packaged it for download. For convenience it also contains identical copies from the original calculator example.
Feel free to use it as you like.

Agile Animals

Agile is successful, efficient and (often) fun. That’s why many companies are trying to be more agile these days. Basically it seems to be easy to apply agile practices and frameworks such as Scrum, Lean Startup or Design Thinking to get started with Agile.

However in reality many, especially larger companies are having problems doing this. From my observations the main reason for this is existing corporate culture. These companies want to be agile but are not willing to significantly change their culture and mindset. They often adhere to bureaucracy, hierarchy and zero mistake policies. This approach has obviously helped them to grow and be successful in the past. When it comes to agile this causes a culture clash which is almost inevitable. These companies can be compared to Elephants. Strong and powerful but inflexible and slow.

There is another kind of animal out there. Squirrels. Squirrels are fast, flexible and full of energy. In other words they are agile. You’ll find these companies in the startup scene, but not only there. Some larger firms spin-off smaller companies in order to gain flexibility. The new companies are free to act autonomously and independently from the originating company. In this scenario the Elephant funds the Squirrel and acts as a sponsor.

Elephants mainly come from the Classic Economy whereas Squirrels can primarly be found in the Creative Economy.

There may be some exceptions, but from what I have seen especially in Germany for many Elephants it is difficult to become really agile. They often try a little bit of Scrum-but and wonder why the agile silver bullet does not fly properly for them. It is not the size that hinders them (amongst others Microsoft and Ericsson are examples of successful or ongoing transitions). For Elephants it is very hard to shift their mindset in ths way it is required to be truly agile.

This is great news for the Squirrels as the inflexibility of the Elephants opens up opportunities for them.

To make this topic more tangible, I created a little illustration which shows the difference between the agile animals (the roller skates represent agile and lean techniques 😉 ).

agileanimals

If you like it you can download this poster in A3 format.

If you want to be more agile and work for an Elephant company I would recommend the following options:

1. Change the Elephant’s mindset

Apply agile techniques straight away and start learning. Make sure the Elephant is able and willing to change the culture and mindset thoroughly. This might take a long time and a great deal of energy.

2. Work in partnership with Squirrels

Fund existing Squirrels or create spin-offs (also known as Corporate Startups) which act in full autonomy. This leaves the Elephant unchanged. Over time the market share might be moved from the Elephant to the Squirrel. Once the Elephant sees the Squirrell’s success, changing the Elephant’s mindset will be easier. 🙂

What do you think? If you have any other options, please send me a message …

 

 

 

 

Product Owner CRACK

When staffing your next agile project make sure you have the right Product Owner on board.
In their book Balancing Agility and Discipline: A Guide for the Perplexed Barry Boehm and Richard Turner coined the acronym CRACK which describes the properties of a good Product Owner.

Collaborative: Works well with development team and stakeholders. Is present within the team.
Representative: Has a good understanding of the product vision and is able to represent the stakeholder.
Authorized: Is empowered to make decision.
Committed: Shares the development team and stakeholder goals.
Knowledgeable: Understands and is experienced in the specific domain to guide the project to success

Keeping those rules in mind can help you to find the right person for the Product Owner role.

Turn contracts into documentation

In part one I’ve shown how to turn contracts into code. In this part I am going to show how to turn contracts into documentation.

Using the contract as a model for both code generation and documentation can save a lot of time. That is because the contract represents a single source of truth, which can be used by developers and business people alike. Just like you would probably do when you design BPMN models together with people from business you can design service contracts in the same way. Designing service contracts together with business people fosters the notion of services as business assets rather than just technical artefacts. Beside the time savings this creates mutual understanding amongst developers and business people. It facilitates collaboration and aligns business and IT. It work especially well in agile contexts in which business and IT work closely together.

But in order to be able to generate proper documentation from XML schema it is necessary to document the schema very thoroughly. Luckily there is a standardized way to do that using <xs:annotation> and <xs:documentation>. The following listing shows how to do it right.


<xs:element name="PerformSimpleCalculationRequest">
  <xs:annotation><xs:documentation>Performs a simple calculation</xs:documentation></xs:annotation>
  <xs:complexType>
    <xs:sequence>
      <xs:element name="operation" type="tns:Operation" minOccurs="1" maxOccurs="1">
        <xs:annotation>
          <xs:documentation xml:lang="EN">Operation to perform</xs:documentation>
          <xs:documentation xml:lang="DE">Operation zur Ausführung</xs:documentation>
        </xs:annotation>
      </xs:element>
      ...
    </xs:sequence>
  </xs:complexType>
</xs:element>

You can see the full listing in the previous blog post.
It is best practice to document every aspect in the schema in a way that can be understood by humans. Ideally not only by technicans but by business people as well. To achive that it is essential to use the right language from the respective business domain. As shown in the listing it is even possible to add documentation in multiple languages.

As XML schema itself is XML we can easily validate and transform it to HTML using XSD and XSLT. A template can be found as part of the example project.

The stylesheet can be linked to the XSD using the directive <?xml-stylesheet type=”text/xsl” href=”contract.xsl”?> within the XSD. If you open the XSD in a web browser it will be transformed right away and show the HTML output.

Alternatively you can transform the XSD on the commandline using msxsl.exe. Just type the following to generate the HTML documentation.

msxsl calculator.xsd contract.xsl -o calculator.html

Another option is to automate the transformation process using the Maven plugin org.codehaus.mojo:xml-maven-plugin as you can see in the following excerpt from the POM file.

<plugin>
	<groupId>org.codehaus.mojo</groupId>
	<artifactId>xml-maven-plugin</artifactId>
	<version>1.0</version>
  <inherited>false</inherited>
  <executions>
		<execution>
			<id>transform</id>
			<goals>
				<goal>transform</goal>
			</goals>
			<phase>install</phase>
		</execution>
	</executions>
	<configuration>
		<transformationSets>
			<transformationSet>
				<dir>api/src/main/resources/xsd</dir>
				<stylesheet>${project.basedir}/repo/transform/xsl/contract.xsl</stylesheet>
				<outputDir>target/repository</outputDir>
				<fileMappers>
					<fileMapper implementation="org.codehaus.plexus.components.io.filemappers.RegExpFileMapper">
						<pattern>^(.*)\.xsd$</pattern>
						<replacement>contract.html</replacement>
					</fileMapper>
				</fileMappers>
			</transformationSet>
		</transformationSets>
	</configuration>
</plugin>

The result is a HTML contract documentation in the target/repository directory. This documentation can for instance be uploaded to a Wiki which serves as a service repository. It is lightweight, easy to use and highly recommended as it greatly helps to increase the likelyness of service reuse.

It is definitely recommended to develop service contracts in workshops with people from IT and business. The person who moderates such a workshop can be called a BizDev, as he/she needs understanding of the business domain and technology alike. Doing that can greatly reduce misconceptions and create awareness of services as reusable business assets. Give it a try!

Turn contracts into code

Interfaces are one of the most important parts in software design. Designing software around properly defined interfaces has many benefits for instance in the areas of consistency, maintainability and reuse. A well written contract describes precisely how software artefacts (or services) interact with each other. Approaches such as Sustainable Service Design or the BiPRO standards rely on contracts based on XML Schema (xsd). As they start with the contract design, they are called contract or schema first approaches.
Once you have a contract the question is how to turn it into code. In the Java world JAXB is the first choice. Lets’s see how we can generate Java sourcecode from the schema.

We start with a simple schema shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="contract.xsl"?>
<xs:schema
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    xmlns:xml="http://www.w3.org/XML/1998/namespace"    
    xmlns:service="http://www.pleus.net/services"
    xmlns:tns="http://www.pleus.net/services/calculator/api/model"
	targetNamespace="http://www.pleus.net/services/calculator/api/model"
	elementFormDefault="qualified" attributeFormDefault="qualified"
	version="1.0">
	  
    <!-- ################################################### -->
	<!-- ################### Messages ###################### -->
    <!-- ################################################### -->

    
	<xs:element name="PerformSimpleCalculationRequest">
		<xs:annotation><xs:documentation>Performs a simple calculation</xs:documentation></xs:annotation>
		<xs:complexType>
			<xs:sequence>
				<xs:element name="operation" type="tns:Operation" minOccurs="1" maxOccurs="1">
					<xs:annotation>
                        <xs:documentation xml:lang="EN">Operation to perform</xs:documentation>
                        <xs:documentation xml:lang="DE">Operation zur Ausführung</xs:documentation>
                    </xs:annotation>
				</xs:element>
				<xs:element name="value-a" type="tns:decimal9F2" minOccurs="1" maxOccurs="1">
					<xs:annotation><xs:documentation>First value</xs:documentation></xs:annotation>
				</xs:element>
				<xs:element name="value-b" type="xs:decimal" minOccurs="1" maxOccurs="1">
					<xs:annotation><xs:documentation>Second value</xs:documentation></xs:annotation>
				</xs:element>
			</xs:sequence>
		</xs:complexType>
	</xs:element>
    
	<xs:element name="PerformSimpleCalculationResponse">
		<xs:annotation><xs:documentation>Result of a simple calculation</xs:documentation></xs:annotation>
		<xs:complexType>
			<xs:sequence>
				<xs:element name="result" type="xs:decimal" minOccurs="1" maxOccurs="1">
					<xs:annotation><xs:documentation>Result</xs:documentation></xs:annotation>
				</xs:element>
			</xs:sequence>
		</xs:complexType>
	</xs:element>
    

   <xs:element name="CalculatorError">
   	  <xs:annotation><xs:documentation>Provides error information</xs:documentation></xs:annotation>
      <xs:complexType>
         <xs:sequence>
				<xs:element name="message" type="xs:string" minOccurs="1" maxOccurs="1">
					<xs:annotation><xs:documentation>Fehlermeldung</xs:documentation></xs:annotation>
				</xs:element>
				<xs:element name="code" type="xs:int" minOccurs="1" maxOccurs="1">
					<xs:annotation><xs:documentation>Fehlercode</xs:documentation></xs:annotation>
				</xs:element>
         </xs:sequence>
      </xs:complexType>
   </xs:element>
	
    <!-- ################################################### -->
    <!-- ################# Type definitions ################ -->
    <!-- ################################################### -->

	<!--  Enum type  -->
	 <xs:simpleType name="Operation">
	    <xs:annotation><xs:documentation>Defines the arithmetic operations</xs:documentation></xs:annotation>
		<xs:restriction base="xs:string">
			<xs:enumeration value="ADD"><xs:annotation><xs:documentation>Add</xs:documentation></xs:annotation></xs:enumeration>
			<xs:enumeration value="SUBTRACT"><xs:annotation><xs:documentation>Substract</xs:documentation></xs:annotation></xs:enumeration>
			<xs:enumeration value="MULTIPLY"><xs:annotation><xs:documentation>Multiply</xs:documentation></xs:annotation></xs:enumeration>
			<xs:enumeration value="DIVIDE"><xs:annotation><xs:documentation>Divide</xs:documentation></xs:annotation></xs:enumeration>
		</xs:restriction>
	</xs:simpleType>

        <xs:simpleType name="decimal9F2">
          <xs:restriction base="xs:decimal">
            <xs:totalDigits value="9"/>
            <xs:fractionDigits value="2"/>
          </xs:restriction>
        </xs:simpleType>

</xs:schema>

The schema is part of an example project which can be downloaded here.

A more appealing representation would look as follows:

In order to turn this schema into code we can call the xjb tool which is part of the Java SDK on the command line like this:

xjc calculator.xsd

As a result we get Java code that we can incorporate in our code base. Another option is to generate the Java code from our Maven build. This can be achieved by adding following Maven Plugin to your pom.


<plugin>
	<groupId>org.jvnet.jaxb2.maven2</groupId>
	<artifactId>maven-jaxb2-plugin</artifactId>
	<version>0.8.1</version>
	<executions>
		<execution>
			<goals>
				<goal>generate</goal>
			</goals>
		</execution>
	</executions>
	<configuration>
		<schemaDirectory>${project.basedir}/src/main/resources/xsd</schemaDirectory>
		<bindingDirectory>${project.basedir}/src/main/resources/xsd</bindingDirectory>  
                <generatePackage>net.pleus.services.calculator.api.model</generatePackage>
	</configuration>
</plugin>

As a result we get basic Java classes that represent the messages and types defined in our schema. If you want to affect the way the code is generated you can provide xjb binding files to customize the generated code. If you want for example use java.util.Calendar to be generated for an xsd:date type you can use the following binding:


<jaxb:bindings version="2.1"
    xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
    xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema">
    <jaxb:globalBindings generateElementProperty="false">
      <jaxb:javaType name="java.util.Calendar" xmlType="xsd:date"  
             parseMethod="javax.xml.bind.DatatypeConverter.parseDate"  
             printMethod="javax.xml.bind.DatatypeConverter.printDate">
      </jaxb:javaType>  
    </jaxb:globalBindings>   
</jaxb:bindings> 

Just drop the file jaxbbinding.xjb in the the same directory as your xsd file.

The foundation
We now have a simple Java class without any additional features:

JAXB comes with very useful plugins to pimp our generated code.

HashCode, equals, toString
If we want standard operations such as hashCode, equals or toString we can use the plugin org.jvnet.jaxb2_commons:jaxb2-basics.

This gives us:

Value Constructor
If we want value constructors, we can use the plugin org.jvnet.jaxb2_commons:jaxb2-value-constructor.

The result is:

Fluent APIs
Fluent APIs can be generated with the plugin net.java.dev.jaxb2-commons:jaxb-fluent-api.

This gives us a very nice fluent API to produce intuitive and readable code.

Bean Validation
One great aspect of schema first design is that one can nicely define types and constraints like tns:decimal9F2 shown in the listing at the top of this page. Wouldn’t it be nice if we could check those constraints in our code without additional effort? The plugin com.github.krasa:krasa-jaxb-tools generates JSR349 compliant bean validation annotations from our XSD types. After running the build we get annotated classes shown below for valueA which appears in the xsd as tns:decimal9F2:


@NotNull
@Digits(integer = 7, fraction = 2)
protected BigDecimal valueA;

To trigger the validation from your code we just need the following code snippet:


import javax.validation.*;

ValidatorFactory validatorFactory = Validation.buildDefaultValidatorFactory();
Set<ConstraintViolation<PerformSimpleCalculationRequest>> violations = validatorFactory.getValidator().validate(request);
for(ConstraintViolation<PerformSimpleCalculationRequest> violation : violations){
  System.out.println("Violation: " + violation);
}

Javadoc
And finally it would be nice to have the documentation from within the XSD file in the generated Java code as well.
This can be achieved by the org.dpytel.jaxb:xjc-javadoc plugin.

If you have additional needs to manipulate the generated code, you can implement your own JAXB plugin which can be hooked into the build process. This gives you maximum flexibility and full control of the code generation.

The entire plugin configuration is shown here:



	org.jvnet.jaxb2.maven2
	maven-jaxb2-plugin
	0.8.1
	
		
			
				generate
			
		
	
	
		true
		>net.pleus.services.calculator.api.model
		
			-Xinheritance
			-XtoString
			-XhashCode
			-Xequals
			-Xvalue-constructor
			-Xfluent-api
                        -XJsr303Annotations
		
		${project.basedir}/src/main/resources/xsd
		${project.basedir}/src/main/resources/xsd
		
			
				org.jvnet.jaxb2_commons
				jaxb2-basics
				${jaxb2-basics.version}
			
			
				org.jvnet.jaxb2_commons
				jaxb2-value-constructor
				${jaxb2-value-constructor.version}
			
			
				net.java.dev.jaxb2-commons
				jaxb-fluent-api
				${jaxb-fluent-api.version}
			
			
     				com.github.krasa
				krasa-jaxb-tools
				${krasa-jaxb-tools.version}
			
                        
		                org.dpytel.jaxb
  		                xjc-javadoc
		                ${xjc-javadoc-version}
		        
		
	


In this post I’ve shown how to turn contracts into code on the Java platform easily. The contracts are 100% reusable, interoperable and cross platform, of instance on the .NET platform. Here you would use svcuitl.exe to turn the contract into code.

In part two I’m going to show how to turn contracts in into documentation.

Free Visual XML Schema Designer

Those of you who utilize a contract first design such as in Sustainable Service Design have the need to edit XML Schema files frequently. If you are like me you are using a plain text or xml editor, as it gives you the greatest flexibility to express exactly what you want.
But sometimes it is great to have a visual representation. For instance when you discuss business related interfaces with people from the business. Eclipse is somewhat limited in this regard as it does not show the structures and types in context.

Visual Studio.NET comes with a great XML Schema designer which is part of the professional edition for a long time. Now Microsoft offers the Visual Studio.NET Community Edition which is a fully featured Visual Studio including the XML Schema designer for free.

Here you can see how it looks like:

It works even if the types are spread into several XSDs. And it shows the documentation. You don’t even need a Visual Studio project. Just drop the Schema into the IDE and off you go.

Sustainable Service Design

We all know the idea of sustainability from our daily life. But is it possible to apply this idea to software development? I think yes.
Sustainable Service Design is a practical approach to design and implement software services with a great level of reuse both at technical and business levels. It is based on the following four principles:

  1. Technology-agnostic service definition
  2. Unified request/response
  3. Consequent contract first
  4. Technology bindings
00_cover_0 If you want to know more, please read my latest article about sustainable service design which has been publised in issue 2.2015 of Javamagazin (German).The interview can be found on the jaxenter site.
In the second part in issue 3.2015 I am showing how to implement a sustainable approach using JEE and JBoss Wildfly.

 

BiPRO takes SOA to the next level!

The advocates of Service Orientation always pointed out that SOA comprises 50% technology and 50% business. At BiPRO this vision becomes true.
BiPRO is a standardization organization for the insurance industry. BiPRO has members from the entire market including well known insurance companies and agents. By standardizing services at the business level using proven technical standards, BiPRO really takes the SOA idea to the next level. BiPRO conformant services are reusable and highly interoperable. Development is contract first, based on open standards such as WSDL and XSD. It is really impressive to see what BiPRO already achieved.

On 25.6.-26.6. June BiPRO-Day 2014 is going to take place in Düsseldorf Germany.

BiPRO-Tag2014_Signet_col

At the event I am going to give a live coding session. In particular I am going to show how to implement and secure BiPRO services using current Web Service standards such as JAX-WS, SAML, WS-Security and WS-SecureConversation. Attendees can see how the implementation works with JBoss Wildfly, Apache CXF and .NET. Moreover they can take a peek into the future of BiPRO standards in the area of security.
I hope to see you there!

Capacity Based Velocity Calculation for Dynamic Agile Teams

Traditionally the velocity (V) of agile teams is calculated as number of story points (SP) delivered per sprint. If our team is static, that means, it consists of the same or at least the same amount of people in each sprint we can get a velocity that really reflects the team performance.
Although highly desireable, from my experience static teams are not very common. In fact most teams have a certain degree of dynamics, especially in long running projects.

Typical reasons are

  • Vacation or sick leave
  • Daily business (especially team members from the business are not 100% commited to the project, as they still have their daily duties)
  • Partial engagement (specialists are only part of the team when their knowledge is required)

How can we calculate the velocity for those dynamic teams? By taking capacity into account and combining it with the team velocity. I can recommend following procedure that I used on several projects with very good results.

  1. Have a sprint planning meeting with all people that might have something to deliver in the next sprint or delivered something in the previous sprint.
  2. Ask every person how much days she plans to commit to the next sprint. This is the planned capacity (PC). Adjust PC if necessary during the sprint planning session based on the selected user stories. Use PC as a basis to plan the next sprint.
  3. Ask every person how much days she really committed to the previous sprint. This is the delivered capacity (DC). The delivered capacity might differ from the planned capacity announced in the previous sprint planning metting. That is normal for the reasons given above.
  4. Calculate the capacity based velocity like this CBV = SP/DC.

The advantages of capacity based velocity are:

  1. It is based on empiric data (delivered capacity instead of planned capacity). It reflects what really happened and not what was supposed to happen.
  2. It grounds story points (virtual) with capacity (real) as it takes capacity into account in addition to the story points. But beware! Once the SP/DC ratio (how many days do we need to implement a story point?) is known after some sprints, it is tempting to perform planning with capacity instead of story points. This is a bad idea as it brings us back to the notion of exact planning which we (hopefully) learned is not possible.
  3. It allows the projection of realistic project release dates as we have a stable measure even if the team structure varies.

 

Understand your Team with SCARF

If you are a Scrum Master or coach you might sometimes wonder why people act and react the way they do.
The SCARF model can help you to understand which factors are driving peoples reactions.
The model lists factors that cause a reaction of either approach or avoid. The factors are:

Status, certainty, autonomy, relatedness and fairness

Here are some ideas what you can do to minimize reactions of avoidance in your Scrum team:

  1. Increase status by praising sprint results as well as team improvements, ideally in public.
  2. Increase certainty by protecting the sprint from outside disturbances. Make sure the expectations are stable and understood.
  3. Increase autonomy by letting the team take decisions.
  4. Increase relationship by colocating the team members. Select team members by personal interests as well as technical expertise.
  5. Increase fairness by treating yourself and the team members equally.

Keeping those factors in mind can help to better understand peoples reactions and adapt your own behavior so that it minimizes reactions of avoidance.